VentureBeat November 14, 2024
Taryn Plumb

Due to the fast-moving nature of AI and fear of missing out (FOMO), generative AI initiatives are often top-down driven, and enterprise leaders can tend to get overly excited about the groundbreaking technology. But when companies rush to build and deploy, they often deal with all the typical issues that occur with other technology implementations. AI is complex and requires specialized expertise, meaning some organizations quickly get in over their heads.

In fact, Forrester predicts that nearly three-quarters of organizations that attempt to build AI agents in-house will fail.

“The challenge is that these architectures are convoluted, requiring multiple models, advanced RAG (retrieval augmented generation) stacks, advanced data architectures and specialized expertise,” write Forrester analysts Jayesh Chaurasia and...

Today's Sponsors

LEK
ZeOmega

Today's Sponsor

LEK

 
Topics: AI (Artificial Intelligence), Technology
Microsoft’s 10 new AI agents strengthen its enterprise automation lead
Learning the Language of Life with A.I.
How Payers are Using AI to Deny Claims and Dent Provider Revenue
4 Issues That Fall Between The Cracks Of Our AI Excitement
Generative AI Is Helping To Clear Up Brain Fog

Share This Article