Nature July 4, 2024
Abstract
Machine learning (ML)-driven diagnosis systems are particularly relevant in pediatrics given the well-documented impact of early-life health conditions on later-life outcomes. Yet, early identification of diseases and their subsequent impact on length of hospital stay for this age group has so far remained uncharacterized, likely because access to relevant health data is severely limited. Thanks to a confidential data use agreement with the California Department of Health Care Access and Information, we introduce Ped-BERT: a state-of-the-art deep learning model that accurately predicts the likelihood of 100+ conditions and the length of stay in a pediatric patient’s next medical visit. We link mother-specific pre- and postnatal period health information to pediatric patient hospital discharge and emergency room...